Sculpting Liquids with Ultrathin Shells

Timounay, Y; Hartwell, AR; [...] Demery, V; Paulsen, JD
Phys. Rev. Lett. 127, 108002

Thin elastic films can spontaneously attach to liquid interfaces, offering a platform for tailoring their physical, chemical, and optical properties. Current understanding of the elastocapillarity of thin films is based primarily on studies of planar sheets. We show that curved shells can be used to manipulate interfaces in qualitatively different ways. We elucidate a regime where an ultrathin shell with vanishing bending rigidity imposes its own rest shape on a liquid surface, using experiment and theory. Conceptually, the pressure across the interface "inflates" the shell into its original shape. The setup is amenable to optical applications as the shell is transparent, free of wrinkles, and may be manufactured over a range of curvatures.


See also...

Enhanced dip coating on a soft substrate

A solid, withdrawn from a wetting liquid bath, entrains a thin liquid film. This simple process, first described by Landau, Levich, and Derjaguin (...) 

> More...

Computational design of a minimal catalyst using colloidal particles with programmable interactions†

Catalysis, the acceleration of chemical reactions by molecules that are not consumed in the process, is essential to living organisms but remains (...) 

> More...