Noise-induced collective actuation in active solids

Collective actuation describes the spontaneous synchronized oscillations taking place in active solids when the elasto-active feedback, which generically couples the reorientation of the active forces and the elastic stress, is large enough. In the absence of noise, collective actuation takes the form of a strong condensation of the dynamics on a specific pair of modes and their generalized harmonics. Here we report experiments conducted with centimetric active elastic structures, where collective oscillation takes place along the single lowest energy mode of the system, gapped from the other modes because of the system’s geometry. Combining the numerical and theoretical analysis of an agent-based model, we demonstrate that this form of collective actuation is noise-induced. The effect of the noise is first analyzed in a single-particle toy model that reveals the interplay between the noise and the specific structure of the phase space. We then show that in the continuous limit, any finite amount of noise turns this new form of transition to collective actuation into a bona fide supercritical Hopf bifurcation.

PHYSICAL REVIEW E

By : Paul Baconnier, Vincent Démery, and Olivier Dauchot

Phys. Rev. E 109, 024606 – Published 20 February 2024

DOI: https://journals.aps.org/pre/abstra...


Top



See also...

Morphological computation and decentralized learning in a swarm of sterically interacting robots

Whereas naturally occurring swarms thrive when crowded, physical interactions in robotic swarms are either avoided or carefully controlled, thus (…) 

> More...

Coupling Exponential to Linear Amplification for Endpoint Quantitative Analysis

Exponential DNA amplification techniques are fundamental in ultrasensitive molecular diagnostics. These systems offer a wide dynamic range, but (…) 

> More...