Accurate gene consensus at low nanopore coverage

Nanopore technologies allow high-throughput sequencing of long strands of DNA at the cost of a relatively large error rate. This limits its use in the reading of amplicon libraries in which there are only a few mutations per variant and therefore they are easily confused with the sequencing noise. Consensus calling strategies reduce the error but sacrifice part of the throughput on reading typically 30 to 100 times each member of the library.


Top



See also...

Mean arc theorem for exploring domains with randomly distributed arbitrary closed trajectories

A remarkable result from integral geometry is Cauchy’s formula, which relates the mean path length of ballistic trajectories randomly crossing a (...) 

> More...

Morphological computation and decentralized learning in a swarm of sterically interacting robots

Whereas naturally occurring swarms thrive when crowded, physical interactions in robotic swarms are either avoided or carefully controlled, thus (...) 

> More...