Nonlinear decision-making with enzymatic neural networks

>Artificial neural networks have revolutionized electronic computing. Similarly, molecular networks with neuromorphic architectures may enable molecular decision-making on a level comparable to gene regulatory networks1,2. Non-enzymatic networks could in principle support neuromorphic architectures, and seminal proofs-of-principle have been reported3,4. However, leakages (that is, the unwanted release of species), as well as issues with sensitivity, speed, preparation and the lack of strong nonlinear responses, make the composition of layers delicate, and molecular classifications equivalent to a multilayer neural network remain elusive (for example, the partitioning of a concentration space into regions that cannot be linearly separated). Here we introduce DNA-encoded enzymatic neurons with tuneable weights and biases, and which are assembled in multilayer architectures to classify nonlinearly separable regions. We first leverage the sharp decision margin of a neuron to compute various majority functions on 10 bits. We then compose neurons into a two-layer network and synthetize a parametric family of rectangular functions on a microRNA input. Finally, we connect neural and logical computations into a hybrid circuit that recursively partitions a concentration plane according to a decision tree in cell-sized droplets. This computational power and extreme miniaturization open avenues to query and manage molecular systems with complex contents, such as liquid biopsies or DNA databases.

Nature

Volume 610, pages 496–501 (2022)
Published: October 2022

By: S. Okumura, G. Gines, N. Lobato-Dauzier, A. Baccouche, R. Deteix, T. Fujii, Y. Rondelez & A. J. Genot

DOI:10.1038/s41586-022-05218-7


Top



See also...

Sculpting Liquids with Ultrathin Shells

Timounay, Y; Hartwell, AR; [...] Demery, V; Paulsen, JD Phys. Rev. Lett. 127, 108002 10.1103/PhysRevLett.127.108002 Thin elastic films can (...) 

> More...

Self-assembly of emulsion droplets through programmable folding

In the realm of particle self-assembly, it is possible to reliably construct nearly arbitrary structures if all the pieces are distinct(1-3), but (...) 

> More...