Uncovering polymer’s unique spindle structure

A new study from Daeseok Kim and Teresa Lopez-Leon of Gulliver lab, in collaboration with Helen Ansell, Randall Kamien, and Eleni Katifori of the University of Pennsylvania, describes how polymer spheres can transform into twisted spindles thanks to insights from 16th century navigation tools. A combination of experimental and theoretical efforts shows how loxodromes, or rhumb lines, can form from polymer spheres, resulting in complex patterns that are ten times smaller than the width of a human hair.

Phys. Rev. Lett. 123, 157801


Scanning electron microscope images showing polymers in a spherical configuration (left); when a new solvent is added, the spheres twist and change into elongated twisted spindles (right). At the top of the spindles (bottom) are one micron spirals. (Image: Daeseok Kim)


Top



See also...

Adaptive Phototaxis of a Swarm of Mobile Robots using Positive and Negative Feedback Self-Alignment

In this paper, we explore how robots in a swarm can individually exploit collisions to produce self-organizing behaviours at the macroscopic (...) 

> More...

Microscopic foundation of the mu(I) rheology for dense granular flows on inclined planes

Macroscopic and microscopic properties of dense granular layers flowing down inclined planes are obtained from Discrete-Element-Method (...) 

> More...