Frugal random exploration strategy for shape recognition using statistical geometry

Very distinct strategies can be deployed to recognize and characterize an unknown environment or a shape. A recent and promising approach, especially in robotics, is to reduce the complexity of the exploratory units to a minimum. Here, we show that this frugal strategy can be taken to the extreme by exploiting the power of statistical geometry and introducing different invariant features. We show that an elementary robot devoid of any orientation or location system, exploring randomly, can access global information about an environment such as the values of the explored area and perimeter. The explored shapes are of arbitrary geometry and may even nonconnected. From a dictionary, this most simple robot can thus identify various shapes such as famous monuments and even read a text.

PHYSICAL REVIEW RESEARCH

By: Samuel Hidalgo-Caballero, Alvaro Cassinelli, Emmanuel Fort, and Matthieu Labousse.

Phys. Rev. Research 6, 023103 – Published 26 April 2024

DOI: https://doi.org/10.1103/PhysRevRese...


Top



See also...

Collective Damage Growth Controls Fault Orientation in Quasibrittle Compressive Failure

Véronique Dansereau, Vincent Démery, Estelle Berthier, Jérôme Weiss, and Laurent Ponson The Mohr-Coulomb criterion describes well the level of (...) 

> More...

Martingale drift of Langevin dynamics and classical canonical spin statistics

A martingale is a stochastic process that encodes a kind of fairness or unbiasedness, which is associated with a reference process. Here we show (...) 

> More...