Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes

Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization.

ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING

Volume13: Page: 457-479
Published: JUL 2022

By: Gomes, Margarida; Rondelez,Yannick; Leibler, Ludwik

[DOI10.1146/annurev-chembioeng-092120-091054 https://www.annualreviews.org/doi/1...]


Top



See also...

DNA nanotechnology to detect cancer biomarkers

How to detect diseases at the earliest stages of development? This is the problematic raised by most scientists and physicians, focusing on new (...) 

> More...

Adaptive strategies in Kelly’s horse races model

We formulate an adaptive version of Kelly’s horse model in which the gambler learns from past race results using Bayesian inference. We (...) 

> More...