Kinetic Monte Carlo Algorithms for Active Matter Systems

Juliane U. Klamser, Olivier Dauchot, and Julien Tailleur
Phys. Rev. Lett. 127, 150602

We study kinetic Monte Carlo (KMC) descriptions of active particles. We show that, when they rely on purely persistent, active steps, their continuous-time limit is ill-defined, leading to the vanishing of trademark behaviors of active matter such as the motility-induced phase separation, ratchet effects, as well as to a diverging mechanical pressure. We then show how, under an appropriate scaling, mixing passive steps with active ones leads to a well-defined continuous-time limit that however differs from standard active dynamics. Finally, we propose new KMC algorithms whose continuous-time limits lead to the dynamics of active Ornstein-Uhlenbeck, active Brownian, and run-and-tumble particles.


See also...

Sculpting Liquids with Ultrathin Shells

Timounay, Y; Hartwell, AR; [...] Demery, V; Paulsen, JD Phys. Rev. Lett. 127, 108002 10.1103/PhysRevLett.127.108002 Thin elastic films can (...) 

> More...

Active boundary layers in confined active nematics

The role of boundary layers in conventional liquid crystals is commonly related to the mesogen anchoring on confining walls. In the classical (...) 

> More...