Non-Gaussian fluctuations of a probe coupled to a Gaussian field

The motion of a colloidal probe in a complex fluid, such as a micellar solution, is usually described by the generalized Langevin equation, which is linear.
However, recent numerical simulations and experiments have shown that this linear model fails when the probe is confined and that the intrinsic dynamics of the probe is actually nonlinear.
Noting that the kurtosis of the displacement of the probe may reveal the nonlinearity
of its dynamics also in the absence confinement, we compute it for a probe coupled to a Gaussian field and possibly trapped by a harmonic potential. We show that the excess kurtosis increases from zero at short times, reaches a maximum, and then decays algebraically at long times, with an exponent which depends on the spatial dimensionality and on the features and correlations of the dynamics of the field.
Our analytical predictions are confirmed by numerical simulations of the stochastic dynamics of the probe and the field where the latter is represented by a finite number of modes.


See also...

Adaptive Phototaxis of a Swarm of Mobile Robots using Positive and Negative Feedback Self-Alignment

In this paper, we explore how robots in a swarm can individually exploit collisions to produce self-organizing behaviours at the macroscopic (...) 

> More...

Linear Instability of Turbulent Channel Flow br

Laminar-turbulent pattern formation is a distinctive feature of the intermittency regime in subcriticalplane shear flows. By performing extensive (...) 

> More...