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In this note, we discuss possible analogies between the subcritical transition to turbulence in shear flows and
the glass transition in supercooled liquids. We briefly review recent experimental and numerical results, as well
as theoretical proposals, and compare the difficulties arising in assessing the divergence of the turbulence lifetime
in subcritical shear flow with that encountered for the relaxation time in the study of the glass transition. In order
to go beyond the purely methodological similarities, we further elaborate on this analogy and propose a simple
model for the transition to turbulence, inspired by the random energy model (a standard model for the glass
transition), with the aim to possibly foster yet-unexplored directions of research in subcritical shear flows.
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I. INTRODUCTION

Statistical physics has devoted a lot of effort to the study
of fully developed turbulence, but much less to that of the
transition to turbulence [1], which occurs when the Reynolds
number, the ratio of the advection time to the viscous time,
is increased. The transition is commonly observed in flow
regimes lacking linear instability and is referred to as globally
subcritical [2-4].

The plane Couette flow, driven by two plates moving
parallel to each other in opposite directions, is linearly stable
at all Reynolds numbers and, as such, is the epitome of
globally subcritical transitions [5]. Other flows usually transit
to turbulence before linear instability sets in. These include
the circular Poiseuille flow (cPf) and the plane Poiseuille flow
(pPf), which are driven by a pressure gradient respectively
along a circular pipe or between two parallel plates, as well as
the counter-rotating Taylor-Couette flow (TCf), driven by two
concentric cylinders rotating in opposite directions. In all these
cases, the transition is particularly delicate to understand due
to its abrupt character. A complex spatiotemporal dynamics is
observed, involving in particular the nucleation and the growth
or decay of turbulent domains called “puffs” (pPf) or “spots”
(pCf)—see, e.g., Refs. [6,7] for cPf, Refs. [8-10] for pCf,
Ref. [11] for pPf, and Refs. [12,13] for TC{.

A recent surge of interest has been motivated by the
audacious proposal that shear flow turbulence could remain
transient up to arbitrarily large Reynolds numbers, opening
ways towards a better control of such turbulent regimes
[14]. This proposal was motivated by experimental and
numerical observations in cPf [14] and pCf [15] regarding
the statistics of turbulent lifetimes, which contradicted those
previously obtained in cPf [16,17] and pCf [18,19]. These
contradictory results, together with the experimental discovery
of a spectacular long wavelength periodic organization of the
laminar-turbulent coexistence in pCf and TCf [20,21], has
motivated further experiments in TCf [22] and cPf [23,24],
the development of various models [25-29], and an impres-
sive number of numerical studies [23,30—41]. As a result,
some comprehension of the mechanisms at play in the
coexistence dynamics, as well as a better knowledge of the
organization of phase space, involving many unstable solutions
of the Navier-Stokes equation, has been gained.
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Interestingly, the presence in phase space of many unstable
solutions and the existence of finite, yet extremely large,
relaxation times are reminiscent of the physics of glasses
(see, e.g., Refs. [42—44]). In particular, whether the structural
relaxation times of a glass really diverges at a given finite
temperature or remains very large but finite at any positive
temperature is an important question—related to the existence
of a genuine phase transition to an ideal glass state—that
remains largely open [45]. However, the intense activity related
to this specific issue has triggered along the way different (and
perhaps even more interesting) questions, driving the field of
glasses towards important conceptual progress [44].

In this paper, we explore the analogy between the subcritical
transition to turbulence and the glass transition from several
viewpoints. After a concise review of the major results on
the transition to turbulence, we discuss the limitations of
fitting procedures in assessing the divergence of the turbulence
lifetime, drawing inspiration from similar discussions in the
glass literature (Sec. IT). We then briefly review the theoretical
scenarios and models that have been proposed to describe the
subcritical transition to turbulence, and we tentatively discuss
the analogy with glasses at a conceptual level (Sec. III). The
understanding of the glass transition has greatly benefited from
the study of oversimplified models like the random energy
model [46,47], which describes the statistical behavior of a
system evolving in a random energy landscape. In this spirit,
we try to transpose the random energy model, keeping in mind
both its strengths and weaknesses, to the modeling of the
subcritical transition to turbulence, in order to possibly gain
insight into the statistical mechanisms at play in this transition
(Sec. IV). As a result, we obtain an estimate of the turbulence
lifetime as a function of the Reynolds number close to the
transition, an estimate which qualitatively agrees amazingly
well with the observed phenomenology.

Clearly, this qualitative agreement does not in itself prove
the analogy to be specifically deep, but it suggests that it
deserves to be further explored. More generally, we hope,
in the spirit of Pomeau’s seminal paper [48], that the
analogy presented here could foster contributions from the
statistical physics community to the old standing problem
of the transition to turbulence, taking advantage of recently
developed concepts in the statistical physics of disordered
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systems. Conversely, the development of techniques such as
particle image velocimetry and the exponential increase of the
numerical capacities could help in validating or invalidating
the assumptions made on some properties of turbulence in
following the present analogy.

II. TURBULENCE LIFETIME

A. A review of experimental and numerical observations

A standard characterization of the subcritical transition
to turbulence is the determination of the average turbulence
lifetime, following either a perturbation or a quench, as a
function of the Reynolds number. We thus start by briefly
reviewing the experiments and direct numerical simulations
reporting the increase of the turbulence lifetime when the
Reynolds number is increased. To our knowledge, the first sys-
tematic measurement of turbulence lifetimes was conducted
in the pCf [18,19]. Two different kinds of experiments have
been performed, differing by the way the initial condition
is prepared. In what we shall call type-A experiments, the
Reynolds number, R, is set to its value of interest and the
laminar flow is disturbed locally at the initial time. In type-B
experiments, a turbulent flow is prepared at high R and
quenched at the initial time down to the R value of interest.
In both cases, one monitors the evolution of the turbulent
fraction f7(¢), which characterizes the coexistence dynamics
of laminar and turbulent domains (see Fig. 1). For R > R,

FIG. 1. (Color online) Typical snapshots of the laminar-
turbulence coexistence at intermediate Reynolds number in plane
Couette flow. (Top) Turbulent spot in a small aspect ratio setup,
created by a localized perturbation. (Bottom) Large-scale coexistence
in a large aspect ratio setup, following a quench from high Reynolds
number.
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fr(t) fluctuates around some average value, which remains
finite on experimental time scales. For R < R,,, fr(¢) relaxes
towards zero, without displaying any long transient regime. In
between, for R, < R < R,, fr(t) exhibits a, first, rapid decay,
followed by a long transient quasisteady regime, before a large
fluctuation sets it to zero. The lifetime of these transients are
exponentially distributed and the average value T was reported
to diverge like (R, — RN

The cPf was later investigated in various ways. In
Refs. [6,17] a puff was generated inside a constant flow rate
pipe flow by introducing a short duration perturbation. Then
R was reduced and the subsequent evolution of the puff was
monitored as it progressed downstream. The probability of
observing a localized disturbed region of flow as a function of
distance downstream is exponential and the time required for
half of the initial states to decay, 71,2, was reported to diverge
like (R. — R)™!, in agreement with the observations made in
the pCf. Other protocols lead to the same conclusions [6,17].

However, these results were challenged later by another
experimental study [14]. In a pressure driven flow through
a very long pipe, the authors could record much longer
dimensionless observation times. They could determine the
probability to be turbulent after a time period given by the
distance between the perturbation location and the outlet, as a
function of flow rate. For short times, the data are within the
error bars of Refs. [6,17] but, for longer times, they deviate
from the divergent behavior reported above and are better
represented by an exponential variation, T = exp(aR + b),
without singularity (here and in what follows, a and b denote
generic fit parameters). Finally, in a recent experimental study
of turbulence in pipe flow spanning height orders of magnitude
in time, drastically extending all previous investigations, it was
claimed that the turbulent state remains transient, with a mean
lifetime, which depends superexponentially on the Reynolds
number: T « exp[exp(aR + b)] [49].

Intense numerical simulations of the cPf have also been
conducted but did not clarify the situation. In Refs. [16,31]
a diverging behavior of the turbulent lifetimes compatible
with the experimental results of Refs. [6,17] is reported.
Later in Ref. [32], the authors—one of which is common
to Ref. [16]—conducted further simulations and reanalyzed
older data, concluding to an exponential dependence such as
the one reported in Ref. [14]. Altogether despite intense exper-
imental and numerical effort, no definitive answer regarding
the divergence or finiteness of turbulence lifetime could be
obtained from the fit of data by phenomenological functional
forms.

B. Fitting procedures: Lessons from glass physics

As stated in the Introduction, this issue is not specific to the
transition to turbulence. When a liquid is suddenly quenched
below its crystallization temperature and if crystallization
can be avoided, the liquid enters a state, called supercooled
liquid, in which the relaxation time increases by several orders
of magnitude over a limited range of temperature [42]. A
divergence at a finite temperature of the relaxation time would
signal an ideal glass transition and, thus, would be of high
interest, at least at a conceptual level. Despite huge efforts
made to measure the variations of the relaxation time over
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an experimental window of more than 10 decades, no clear
consensus has been obtained yet. More precisely, the available
data are both consistent with fits including a divergence at
a finite temperature 7, > 0 and with fits diverging only at
T = 0 [45].

The same difficulty is also expected to appear in the context
of turbulence. We illustrate this point on experimental data
recently obtained in the case of the TCf [22], when only the
external cylinder is rotating. The TCf is then, like the pCf,
linearly stable for all R. Also, because the TCf is a closed flow,
one can record very long times. In this experiment, the angular
rotation of the external cylinders fixes the Reynolds number.
The flow was perturbed by rapidly accelerating the inner
cylinder in the direction opposite to the rotation of the outer
cylinder and immediately stopping it. After a short regime
of featureless turbulence, the flow exhibits long transients
characterized by the coexistence of laminar and turbulent
domains, before eventually relaxing towards the laminar flow.
The distribution of lifetimes is again exponential, and the
authors argue that the mean turbulent lifetime does not diverge
and rather behaves in the transitional regime as a double ex-
ponential T o exp[exp(aR + b)], as observed in the cPf [49].

It is interesting to note that in the oldest experiments,
the debate about the functional dependence of the average
turbulent lifetime on the Reynolds number was concentrating
on the choice between the two following forms:

/70 = exp(R/Ry), (M

R \“
T/T():(RC—R)’ @ >0, @)

whereas the most recent experiments, both in the case of the cPf
[49] and the TCf [22], have access to much longer experimental
time scales and point at a double exponential behavior. This
last functional form ensures a very fast increase of T without
singularity and could give the impression that it solves the
above debate. However, as learned from the physics of glasses,
the debate has actually been shifted towards two alternative
functional forms, namely

In(z/79) = A exp(R/Ry), 3)

R, *
ln(r/ro)zk(Rc_R> , a>0. 4)

As a matter of fact, Eq. (4), which has (to the best of
our knowledge) not yet been proposed in the context of
the transition to turbulence, is a very standard form called
the Vogel-Fulcher-Tammann (VFT) law in the physics of
glasses [45].

Figure 2 displays the data obtained in TCf [22]—which are
available online as Supplementary Material of Ref. [22] with
that paper—together with possible fits by the four functional
forms proposed above. Note that we have only performed
global fits of the data, without trying to extract various regimes
and crossovers as can be done in the case of glasses [45].
One clearly observes that, indeed, the relevant variable to
describe the growth of the turbulent lifetimes is In(7), as soon
as really large times are considered. However, one also sees
that apart from the simple exponential form Eq. (1), all other
descriptions are not discriminable, so there is no definitive way
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FIG. 2. (Color online) Probing finite lifetime experimentally:
Relaxation lifetimes of turbulent initial conditions in a Taylor-Couette
flow, with rotating external cylinder and internal cylinder at rest (data
from Ref. [22]). Four possible fits are proposed as indicated in legend.
Top and bottom panels are in lin-lin and lin-log scales respectively.
Times are given in units of d / rowy, where d is the gap between the two
cylinders, ry is the radius of the external cylinder and w its angular
velocity. All fits were performed using a standard least-squares fit
procedure. Fit with Eq. (1) (lowest curve on top panel and straight
line on bottom panel) was obtained by imposing a linear fit of log(t)
vs. R. Fit with Eq. (2) (highest curve on top panel and convex curve
on bottom panel) was obtained by imposing a linear fit of log(z) vs.
log(R./(R. — R)), optimizing the fit quality on R.. Fit with Eq. (3)
((dotted line, undistinguishable from fit with Eq (4)) was obtained
by imposing a linear fit on log(t) vs. exp(R/Ry), optimizing the fit
quality on Ry. Finally, fit with Eq. (4) [dotted line, undistinguishable
from fit with Eq (3)] was obtained by imposing a linear fit of log(t)
vs. R./(R. — R), optimizing the fit quality on R.. In this last case,
o was, thus, set to 1. It was checked that other values of o up to 3
cannot be discriminated. For Eq. (1), the regression coefficient r;, is
equal to 0.971. For all the other cases, r, = 0.994.
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to rule out or confirm the existence of a singularity. One faces
the same difficulty as in the physics of glasses: the lifetimes
to be measured become very large, which makes it difficult
to accumulate significant statistics. The experimental results
are thereby confined to a finite range of Reynolds number
or temperature, from which even with high-quality data sets,
the divergence of a characteristic time cannot convincingly be
determined from fits.

Before concluding this section, let us mention that the
double-exponential form [Eq. (3)] has been justified on the
basis of extreme value statistics [S0]. However, as stated by
the authors, the argument is only local, as it involves an
expansion in R around a given reference value. Hence, no
clear conclusion can be drawn from the theoretical argument
of Ref. [50] on the issue of the divergence of 7 at a finite or
infinite value of R. Finally, let us emphasize that, for now, we
have left aside all issues related to finite-size effects, which in
turn can severely alter the functional dependence of time and
length scales in transitional regimes.

III. THEORETICAL SCENARIOS AND MODELS

After discussing the empirical results, a natural question
is to know how one can understand, from a more theoretical
perspective, the globally subcritical transition to turbulence.
This transition is by definition controlled by solutions of the
Navier-Stokes equation, which do not branch continuously
from the laminar flow solution when the Reynolds number is
increased [51]. These solutions—of various kinds, stationary
states, traveling waves, or more complex coherent structures—
are unstable and form hyperbolic states, with stable and
unstable manifolds. Early indications of the existence of these
solutions were reported in pCf, both numerically [52-54] and
experimentally [55]. More recently, they were also observed
in the cPf [56]. The intricate network made of these manifolds
and their connections then serves as a skeleton for the turbulent
flow.

A. Low-dimensional models

In principle, one would like to collect all such states,
estimate their dynamical weight, and calculate statistical
averages from periodic orbit theory [57]. In practice, one
must restrict the analysis to low-dimensional models [58—63]
or to simulations [14,16,25,32,62,64—66], performed in the
so-called minimal flow unit assumption [67]. Doing so, it was
shown that the regions of initial conditions for which long
lifetimes exhibit strong fluctuations and a sensitive dependence
on initial conditions were separated from the regions with
short lifetimes and smooth variations by a border, the so-
called “edge of chaos” [62,63,65]. Later, some exact solutions
with codimension-1 stable manifolds have been identified as
edge states, that is, solutions that locally form the stability
boundary between laminar and turbulent dynamics [35-37,68].
These important results contributed to make concrete the
picture borrowed from dynamical system theory of a turbulent
repellor, separated from the laminar state by a set of edge
states connected through heteroclinic manifolds. In particular,
the existence of the above nontrivial solutions has served
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to understand the exponential distribution of lifetimes in the
transitional regime.

B. Spatially extended models

Unfortunately the above picture does not bring a complete
description of the subcritical transition to turbulence. As ar-
gued in Refs. [26,28,69], the reason is that the dynamics, being
either projected on a small set of modes or limited to small
computational domains with periodic boundary conditions,
cannot capture the genuinely spatiotemporal coexistence of
laminar and turbulent states observed in open and unbounded
flows. In particular, it can neither capture the long wavelength
modulation of turbulent intensity nor the regime of alternating
laminar and turbulent stripes, first observed experimentally
in pCf and TCf [20,21], and then reproduced numerically in
pCf [30,34,37,39,41,70].

As amatter of fact, it has long been known that, according to
the scenario called spatiotemporal intermittency [71], transient
chaotic states locally distributed in space, e.g., on a lattice, may
evolve into a sustained turbulent global state due to spatial
couplings [72-75]. Following this path, it was demonstrated
that a simple 1D model of cPf, composed of coupled maps,
does indeed capture remarkably well the character of the
turbulent pipe flow in the transitional regime and exhibits a
critical transition towards sustained turbulence via spatiotem-
poral intermittency [29]. The transition is further believed to
belong to the directed percolation class [72,73,76], as already
suggested in Ref. [48] for pCf, and recently reconsidered in
cPf [77].

Finally, it was shown by means of fully resolved direct
numerical simulations of the Navier Stokes equation that there
exists a crossover length scale of the order of 10 times the
cross-stream length below which the spatiotemporal processes
at play in large-scale simulations and experiments are not
captured [28]. Since then, a number of numerical investigations
of large aspect ratios cPf and pCf have reproduced the complex
spatiotemporal coexistence of laminar and turbulent states
and identified the first hydrodynamics mechanisms at play
[23,37,38,41].

C. Analogies and differences with glasses

We now wish to discuss from a theoretical perspective the
analogies, as well as the differences, between flows close to
the transition to turbulence (in short, transitional flows) and
liquids close to the glass transition. To this aim, it is useful
to, first, summarize the essential features of the subcritical
transition to turbulence.

(a) Subcriticality: While the laminar flow is stable against
infinitesimal perturbations, finite amplitude perturbations may
trigger an abrupt transition towards a disordered flow. Such
a disordered flow can also be obtained by quenching fully
turbulent flows.

(b) Spatiotemporal intermittency: This disordered flow is
made of turbulent domains, which move, grow, decay, split,
and merge, leading to spatiotemporal intermittency, that is, a
coexistence dynamics in which active or turbulent regions may
invade absorbing or laminar ones, where turbulence cannot
emerge spontaneously.
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(c) Transients and metastability: For large-enough
Reynolds numbers, this disordered flow has long lifetimes,
which are distributed exponentially. Whether the associated
characteristic time diverges at a finite Reynolds number is still
a matter of debate. For low Reynolds numbers, say R < R,,
or small-enough disturbances, the flow relaxes rapidly towards
the laminar flow.

(d) Unstable states: When increasing the Reynolds number
a larger and larger number of unstable finite amplitude
solutions appear in phase space. Some have been identified
as edge states separating the others from the laminar state.

As mentioned in the Introduction, some of these features are
also shared, at a qualitative level, with glasses. For instance,
the presence of long transient relaxing states is a key feature
of glasses [42]. Also, the existence of many unstable solutions
is reminiscent of the energy landscape picture of glasses [78].
Indeed, the slow relaxation in glasses has been argued to result
from the wandering of the phase-space point representing the
system in a complex energy landscape [79], mostly composed
of many unstable fixed points [43,80,81] (though local minima
also play an important role at low-enough temperatures). The
most striking feature of the glass transition, the rapid increase
of the relaxation time by several orders of magnitude over
a moderate range of temperatures, is also interpreted as a
consequence of this complex dynamics in phase space. These
results from glass theory suggest that the complex structure of
phase space in transitional flows, with the presence of many
unstable solutions, plays an important role in the properties
of the subcritical transition to turbulence. To elaborate on this
idea, we propose in the next section an extension of the simplest
model of the glass transition, namely the random energy
model [46,47], to the context of the transition to turbulence.

Other possible similarities between the transition to turbu-
lence and the glass transition can be pointed out, considering
now the real-space dynamics. For instance, one of the recurrent
feature of glassy systems is the heterogeneities of the dynam-
ics: slowly and rapidly relaxing regions coexist in real space,
permanently evolving in a complex spatiotemporal organiza-
tion [82]. This is reminiscent of the dynamics observed in sub-
critical transitional flows, where regions with different level of
fluctuations coexist. And indeed, some of the one-dimensional
models introduced to describe such dynamical heterogeneities
in glasses, the so-called kinetically constrained model [83,84]
exhibit spatiotemporal dynamics which are very similar to
those observed in the one-dimensional models introduced to
discuss the transition via spatiotemporal intermittency [29,73],
especially when looking at spatiotemporal diagrams. For some
of the KCM models, the critical point observed in the limit of
zero temperature even belongs to the directed percolation class.

Let us emphasize that beyond the possible analogies
discussed above, there are also many important differences
between the glass transition and the transition to turbulence.
A first difference is that supercooled liquids, in which the
relaxation time strongly increases when lowering temperature
close to the glass transition, are equilibrium systems, while
transitional flows are intrinsically nonequilibrium systems.
Indeed, the control parameter of the transition (the Reynolds
number) may be thought of as a distance to equilibrium,
which has to be increased to reach the turbulent state. Another
difference is that the turbulent lifetime is the time before the
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flow falls into the absorbing laminar state, while the relaxation
time in glasses is defined from the relaxation of density, or
stress, correlations; no absorbing state is involved in this case.

A precise mapping between the glass transition and the
transition to turbulence thus should not be expected, and
the proposed analogy should not be considered in a strict sense.
As we shall see now, there is, for instance, no direct mapping
between, say, the Reynolds number and the temperature. The
idea underlying the present work is, rather, to take advantage
of the methodological and conceptual tools developed in
the framework of the glass transition to shed some light on
the subcritical transition to turbulence, keeping in mind the
limitations of such an approach. Still, we shall see, as a first
illustration, that it allows us to discuss in an original way the
dependence of the turbulence lifetime on the Reynolds number.

IV. A RANDOM ENERGY MODEL
FOR TRANSITIONAL FLOWS

Along the lines described in the last section, we now intro-
duce a simple model that captures, as an essential ingredient,
the wandering of the system on a complex landscape. This
model is a variant of the random energy model [46,47], a toy
model which has proved useful in the understanding of the
glass transition, in spite of its oversimplified character. As a
by-product, our model yields interesting predictions for the
dependence of the turbulent lifetime on the Reynolds number,
as discussed below.

A. Diffusion in the energy landscape

As afirst step, it is necessary to statistically characterize the
properties of the energy landscape, in particular, the number
of unstable solution at a given energy above the laminar state,
as function of the Reynolds number and of the volume of
the flow. Though numerical investigations of turbulent flows
have not been able yet to characterize the number of unstable
solutions as a function of the volume of the flow, the analogy
with glasses suggests that this number of solutions may grow
exponentially with the volume of the system. Characterizing
the state of the flow by its turbulent energy per unit volume,
e = E/V (that is, the excess kinetic energy with respect to the
laminar flow), we assume that the number Qv (g, R) of unstable
solutions at a given energy density ¢ and Reynolds number R
grows exponentially with the volume V according to

Qy(e,R) ~ "R, )

thus defining an entropy density s(e,R). At low Reynolds
number, no unstable states exist, so we assume that the
entropy s(e,R) is equal to zero for all ¢ > 0 if R is less
than a characteristic value R,. For R > R,, we assume
that s(e,R) > 0 on an interval eg,;,(R) < & < &max(R), and
s(e,R) = 0 otherwise, meaning that unstable states exist only
in the energy interval (€min,Emax)-

Turning to dynamics, we assume, on the basis of the
experimental and numerical observations reported in Sec. 111,
that the turbulent flow spends most of its time close to
unstable solutions and that the evolution of the flow can be
considered as a succession of jumps between different unstable
solutions. If, however, the flow ends up in the laminar state,
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the evolution stops until an external perturbation is imposed.
Taking into account the presence of the absorbing laminar state
is obviously essential to determine the lifetime of the turbulent
flow. This will be the focus of Sec. IV B. Yet, in a first stage,
it is interesting to consider the evolution of the turbulent flow
in the absence of the absorbing laminar state, in order to make
the analogy with glass models emerge more clearly.

As it is unlikely that a large amount of energy could be
injected or dissipated within a short time period, one expects
that the energy of successively visited unstable solutions are
close to one another. At a coarse-grained level, it is then natural
to assume that the energy ¢ evolves diffusively. In order to take
into account the variation with ¢ of the number of unstable
states, the evolution should also be biased toward values of the
energy with a high entropy s(e, R). More precisely, the bias
should depend on the derivative of the entropy with respect
to the energy (a constant entropy introduces no bias in the
dynamics). Altogether, the simplest evolution equation for the
energy ¢(t) incorporating the above ingredients is the following
Langevin equation

de _ ys'(e,R) — A+ £(), (6)

dt
where the prime denotes a derivative with respect to €. To
enforce the finite range of values e, < & < &max, reflecting
boundary conditions are assumed at epi, and en.. The
parameter y is a proportionality coefficient to be determined
later on, included for dimensional reasons. The term A accounts
for dissipative effects, and £(¢) is a white noise describing the
energy injection mechanism, satisfying

(EMEE)) =2D 8t — 1), )

where D is a diffusion coefficient in energy space. These are
obviously strong simplifications: the dissipation rate could,
in principle, depend on & and the noise should rather be
considered as colored and multiplicative in such nonequi-
librium systems, but we wish to keep the model as simple
as possible for the sake of illustration. The assumption of
a constant dissipation rate is, however, justified in the limit
where the width €p,x — emin Of the accessible energy range
is small with respect to eni,. Besides, considering that the
noise is self-generated by the turbulent fluctuations, and, thus,
results from the superposition of a number of contributions
proportional to the volume V, one expects the diffusion
coefficient to scale as D = Dy/V. Note that all parameters
y, A, and Dy may depend on the Reynolds number R.
The Fokker-Planck equation describing the evolution of the
probability distribution P(¢g, R,t) then reads
oP 0 F_a1p Dy 3*P g
o = 88([7/S 1P)+ V 962 )

The stationary solution P (e, R) is obtained as

1 \%
P(e,R) = Z exp {Fo[ys(e,R) — As]} . 9)

Following standard statistical physics arguments, one expects
the distribution P(g,R) to be proportional to the number of
unstable states Qy(e,R) ~ ¢"*®® which imposes y = Dj.
Introducing the parameter B = A/Dy, the stationary
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FIG. 3. (Color online) Sketch of the entropy surface and its slopes
along the energy density direction, together with the path followed by
the flow while varying the Reynolds number. Colors of the surface go
from blue to red with increasing Reynolds number (R, > R,). The
green line, on the plane s — sy = 0 indicates &y,;,(R). Fixing some
Reynolds number R (here a given black line among the four drawn on
the entropy surface) one sets 8(R). Solving Eq. (11) then graphically
amounts to finding a slope along the energy density direction equal
to B(R). A solution exists if B(R) < Bo(R), the slope at the intersect
with e (R). Varying R, one follows the blue path on the surface
(here the line intersects three black lines), eventually leading to the
value R, such that B(R,) = Bo(R,).

distribution then reads
1
P(e,R) = 7 exp{V[s(e,R) — B(R)el}, (10

where we have emphasized the R dependence of the parameter
B, which, in the present context, describes the balance between
the energy injection and the dissipation, as does the inverse
temperature at equilibrium. If V is large, the distribution is
dominated by the energy £(R) which maximizes the argument
of the exponential, namely s(e,R) — B(R)e. If the maximum
of s(e,R) — B(R)e lies within the interval enin(R) < & <
&max (R), the most probable energy is the solution of

s'(E(R),R) — B(R) = 0. an

Assuming the entropy s(e,R) to be a concave function of &
(see Fig. 3), s'(¢, R) is a decreasing function of ¢ and, thus, has
its maximum at & = &pin(R).

We now introduce the key element of the model, which we
borrow from the random energy model [46,47]. The specificity
of the latter, which leads to a glass transition, is that the entropy
has a finite slope at the minimum energy. By analogy, we thus
assume that s'(e, R) takes a finite value, denoted as By(R),
when & — enin(R).

From a statistical physics point of view, the presence of a
finite slope of the entropy at the minimum energy is related to
the presence of long-range interactions in the system. Indeed,
one can check that for short-range interacting systems, the
entropy has an infinite slope at the minimal energy [85]. In
the random energy model, the fact that all energy levels are
statistically independent implicitly results from long-range
(mean-field type) interactions. Indeed, the random energy
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model can be interpreted as the limit of mean-field spin-glass
models where interactions involve p spins (instead of two spins
for, e.g., the Ising model), when p — oo [47].

In the context of the subcritical transition to turbulence, the
presence of the pressure field and of large-scale unstable solu-
tions, such as the unstable longitudinal vortices, naturally in-
duces such long-range correlations. Note also that long-range
correlations are well known to be present in the fully turbulent
regime, as seen, for instance, by the presence of non-Gaussian
fluctuations in the flow [86,87]. The generic presence of
long-range correlations in turbulent flows thus make plausible
the assumption of a finite slope of the entropy at the minimal
energy where unstable solutions exists. Clearly, this hypothesis
would need to be checked in numerical simulations of realistic
flows, which is, however, a complicated task. We thus presently
take this assumption as a working hypothesis motivated by
the analogy with glasses and explore its consequences in the
framework of subcritical turbulence modeling.

Coming back to the model, we see that if S(R) < By(R),
Eq. (11) generally admits a solution &(R) > epin(R). In
contrast, if B(R) > Bo(R), Eq. (11) has no solution, and
s(e,R) — B(R)¢e is maximum at & = gpin(R). The probability
distribution then concentrates on &n;,(R). Intuitively, one
expects S(R) to be a decreasing function of R (that is, the
temperature 8! characterizing the fluctuations increase with
the Reynolds number). On the other hand, the total number
of unstable states increases with the Reynolds number, and
it is thus plausible that Sy(R) increases (or at least remains
constant) with R. This suggests the existence of a Reynolds
number R, such that B(R,) = Bo(R,). In this case, the average
energy &(R) is larger than epi(R) for R > R,, while the
dynamics in phase space concentrates on the states of minimal
energy for R < R,.

As emphasized at the beginning of this section, these
conclusions hold under the unphysical hypothesis that no
laminar state is present. However, if the paths leading from the
unstable states to the laminar one are rare enough, the flow is
likely to visit alarge number of unstable states and, thus, should
partially equilibrate, before ending up into the laminar state.
It is then plausible that the equilibrium distribution given in
Eq. (10) qualitatively describes this quasiequilibrium regime.
A natural assumption is that most of the paths leading to the
laminar state are connected to unstable states close to gy, (R),
the so-called edge states in the context of turbulence. As for
R < R,, the average energy remains close to gpin(R), the flow
should reach the laminar state in a reasonably short time.
Conversely, for R > R,, the typical energy remains well above
the threshold e, (R), and one expects that it takes a very large
time to find the laminar state, as it implies excursions very far
from the typical energy.

Hence, the Reynolds number R, appears as a transition (or
crossover) value between a regime of short turbulent lifetime
and a regime of large lifetime. Note also that the turbulent
lifetime should essentially vanish below the Reynolds value
R, where unstable states cease to exist.

B. Determination of the turbulent lifetime

In this section, we now try to put the above arguments on
a more quantitative basis. We define the turbulent lifetime as
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the mean time to reach the laminar state after a sudden quench
from a higher Reynolds number value, where turbulence is
established. This situation can be modeled using Eq. (6) for
the stochastic dynamics of £(¢), with now an absorbing (instead
of reflecting) boundary at ¢ = &y, to account for the presence
of the laminar state. The initial condition at = 0 is chosen as
£(0) = emax to model the quench from high-energy turbulent
states. Determining the turbulent lifetime then amounts to
computing the mean first passage time at the absorbing
boundary & = &pin.

Such a calculation is, however, difficult for an arbitrary
functional form of the entropy s(e, R) and we have to restrict
the choice of s(e, R) to the linear form

s(&,R) = Po(R) [& — emin(R)] + s0(R)

over the interval e, (R) < € < &max(R). In this case, the mean
first passage time can be computed from the solution of the
associated Fokker-Planck equation [88], and one finds

(12)

Vv
T= o (Ae)’ fIV(B; — B) Aé] (13)
with Ag = émax — €min and Bz = B(R,), and where the func-
tion f(x)is given by

1
&) == (" =1 —ux). (14)

For large V, the argument of the function f in Eq. (13) is
large as soon as B, # B, thatis R # R,. The value of 7 is then
given, to a good approximation, by the asymptotic behavior of
f(x) when x — 00, which reads

f(x) ~ L X — —00, (15)
x|

foO~5 x> 4oo. (16)
X

Hence, 7 is given for 8, < B by
Ae
T (17

Do(B — Bg)

which turns out to be independent of the volume V, as
intuitively expected in the large V limit. In terms of Reynolds
number, one thus has a power-law divergence for R close to
R, (R < Ry),
70

R,— R’
However, for any finite volume V this divergence is cut off
when R approaches Ry, assoonas R, — R < aV ™! with some

constant a, and a crossover is observed to the exponential form
obtained from Eq. (16),

T ~

(18)

eV Be—PrAe
T~ Ty ra——
DOV(ﬁg - :3)

Contrary to Eq. (17), expression (19) involves the volume
V. For V — oo, t becomes infinite, and a true power-law
divergence is observed for R < R,. Figure 4 illustrates the
behavior of the turbulent lifetime as a function of B,/ for
increasing volumes. For very large but finite V, the divergence
can be observed in practice only on a narrow range of Reynolds
numbers before T becomes exceedingly large. On this narrow

19)
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FIG. 4. (Color online) Sketch of the turbulent lifetime as a func-
tion of B,/B, the effective Reynolds number. (Main panel) The con-
tinuous curve is the lifetime for a given volume of the system as given
by Eq. (13); dashed curves are the asymptotic functional forms which
govern the behavior of T on each side of B,; they have been shifted
for clarity. (Inset) Turbulent lifetimes for increasing system size: The
larger the system, the steeper the increase of lifetime. The singular
behavior is observed in the limit of an infinite system size only.

range, (B, — B)As behaves linearly with R. In contrast, if V
is not too large, the range of R over which the divergence is
observed broadens, and corrections to the linear behavior of
(Bo — B)Ae with R can become observable, possibly leading
to a superexponential behavior of t as a function of R. Though
subexponential behavior cannot be discarded, one expects
at least Ae to increase with R, which goes in favor of the
superexponential case.

V. DISCUSSION

The initial motivation of the analogy proposed in this
paper was twofold. First, the intense debate that animated
the transition to turbulence community regarding the possible
divergence of the turbulent lifetimes at a finite Reynolds
number was reminiscent of a similar situation encountered in
the physics of glasses a few decades earlier. Second, the idea
that the dynamics is controlled by unstable solutions away
from the laminar state shared some similarity with the role
played by the large number of saddles at the onset of the glass
transition. The goal of the analogy presented here was to make
these intuitions more precise.

We have shown that, indeed, even with very good data,
one cannot discriminate a singular dependence from a regular
but very fast increase of the turbulent lifetimes, especially if
one includes the possibility of a Vogel-Fulcher-Tammann-like
singularity. We have also seen that finite-size effects may lead
to a crossover, which cannot be resolved experimentally or
numerically because of the extremely large time scales at play.

The model presented here was designed to be as simple
as possible, taking inspiration from the random energy model
with the aim to illustrate the analogy between glasses and
transitional flows. As such, it does not claim to be realistic in
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any way, and some of its main limitations are rather obvious:
The spatial structure of the flow is not taken into account, and
the key ingredient (the finite slope of the entropy at minimum
energy) is taken as a working hypothesis, motivated by the
analogy with glasses. It is, however, quite remarkable that
such a simplified model yields a crossover between a power
law and an exponential form, in qualitative agreement with the
experimental results. Note also that this result on the turbulent
lifetime is not a straightforward mapping from the random
energy model, since the latter is a purely static model, with no
dynamics involved, and without any equivalent of the laminar
state considered here.

These encouraging first results call for checks in direct
numerical simulations of the hypotheses underlying the model.
Counting the number of unstable solutions as a function of
their energy density, that is, accessing s(e,R), would be a
major step towards the characterization of the transition to
turbulence. This is obviously a difficult task but still far less
ambitious than characterizing the stability properties of these
solutions and describing the complex interplay of their stable
and unstable manifold. This simplification is, in essence, the
gain obtained when switching from a dynamical system point
of view to a statistical physics one. A first step would be to
investigate a similar approach in simpler nonlinear spatiod-
ifferential equations, where spatiotemporal intermittency has
been studied, like the Kuramoto-Sivashinsky equation or the
complex Ginzburg Landau one [71]. Valuable insights could
also be obtained by measuring in direct numerical simulations
the dissipation rate as a function of the energy density, as
well as characterizing the statistical properties of the turbulent
energy fluctuations in the intermediate range of Reynolds
numbers.

In the above section, we have considered V as the volume
of the system. However, in the spirit of real-space approaches,
the relevant volume to be considered may rather be the volume
of coherent regions of the flow, namely regions over which
correlations extend. In a very large aspect ratio experiment,
it is plausible (though not obvious) that far-away regions in
the system experience no interactions. As a result, the volume
V would acquire a more intrinsic nature: It would then be
self-determined by the flow dynamics and not by the arbitrary
size of the experiments.

Such a coherence volume cannot be accessed in the
framework of models similar to the random energy model,
which is mean field in nature. However, if the analogy with
the physics of glasses proves to be fruitful, it would be of
interest to consider its most recent developments (including,
in particular, the random first-order transition scenario [89]),
which precisely address the real-space description issue [44].
Pomeau [48] suggested more than twenty-five years ago that
the growth and death of the laminar and turbulent regions could
obey a first-order nucleation-like dynamics (albeit of a peculiar
type, given the fluctuating active property of the turbulent
state and the absorbing character of the laminar state). Let
us conclude with the somewhat naive suggestion that taking
inspiration from the random first-order transition theory of
glasses might be a way to extend the standard laminar-turbulent
coexistence scenario to a situation where a large number of
turbulent states (associated to local unstable solutions of the
Navier-Stokes equation) coexist with the laminar state.
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