Interfaces in soft matter

Complex systems at interfaces are a modern research field continuously raising fundamental and applied questions. It is characterized by soft, liquid or amorphous-solid objects whose typical size becomes comparable to the one of their inner constituents (molecules, colloids, etc.), or whose surface effects dominate the volume ones. Under certain circumstances, such complex interfaces can also be active leading to a plethora of new phenomena.

Microfluidics and application to biology

Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics, A. Blin, A. Le Goff, A. Magniez, S. Poirault-Chassac, B. Teste, G. Sicot, K. A. Nguyen, F. S. Hamdi, M. Reyssat, D. Baruch, Scientific Reports 6:21700 (2016).
Experimental and numerical study of platelets rolling on a von Willebrand factor-coated surface, J. Pujos, M. Reyssat, A. Le Goff, Medical Engineering and Physics 55:25-33 (2018).
Self-Similar Relaxation of Confined Microfluidic Droplets, M. Kerdraon, J. D. McGraw, B. Dollet, and M-C. Jullien, PRL 123:024501 (2019).

Patterns at fluid interfaces

Polygonal instabilities on interfacial vorticities, M. Labousse, J. W.M. Bush, The European Physical Journal E, 38 (10), 1 (2015).
The hydraulic bump: The surface signature of a plunging jet, M. Labousse and J. W.M. Bush, Physics of Fluids 25 (9), 229-238 (2013)
Time reversal and holography with spacetime transformations, V. Bacot, M. Labousse, A. Eddi, M. Fink and E. Fort, Nature Physics, 12, 972 (2016)

Dynamics of soft interfaces

Mechanical factors affecting the mobility of membrane proteins, V. Démery and D. Lacoste, in "Physics of biological membranes", Springer (2018).

Interfacial phoretic and Marangoni flows

Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion, Izri, Z., van der Linden, M. N., Michelin, S. & Dauchot, O. Phys. Rev. Lett. 113, 248302 (2014).
Flow field around a confined active droplet, De Blois, C., Reyssat, M., Michelin, S. & Dauchot, O. Physical Review Fluids 4, 054001 (2019).

Disordered interfaces for fracture

Collective Damage Growth Controls Fault Orientation in Quasibrittle Compressive Failure, V. Dansereau, V. Démery, E. Berthier, J. Weiss, and L. Ponson, Phys. Rev. Lett. 122, 085501 (2019)

Polymer nanohydrodynamics and interfacial slip

Adsorption-induced slip inhibition for polymer melts on ideal substrates, M. Ilton, T. Salez, P. D. Fowler, M. Rivetti, M. Aly, M. Benzaquen, J. D. McGraw, E. Raphaël , K. Dalnoki-Veress and O. Bäumchen, Nat Comm 9:1172 (2018).
Slip-mediated dewetting of polymer microdroplets, J. D. McGraw, T. S. Chan, S. Maurer, T. Salez, M. Benzaquen, E. Raphaël, M. Brinkmann, and K. Jacobs, PNAS 113:1168-1173 (2016).
Influence of bidisperse self-assembled monolayer structure on the slip boundary condition of thin polymer films, J. D. McGraw, M. Klos, A. Bridet, H. Hähl, M. Paulus, J. M. Castillo, M. Horsch, K. Jacobs, J Chem Phys 146:203326 (2017).

Polymer capsules assembled by microfluidics

One-Step Fabrication of pH-Responsive Membranes and Microcapsules through Interfacial H-Bond Polymer Complexation, J. Dupré de Baubigny, C. Trégouët, T. Salez, N. Pantoustier, P. Perrin, M. Reyssat, C. Monteux, Scientific Reports 7:1265 (2017).
Microfluidic probing of the complex interfacial rheology of multilayer capsules, C. Trégouët, T. Salez, C. Monteux, M. Reyssat, Soft Matter 15, 2782 (2019).

Joshua MCGRAW | webpage | Google Scholar |
Élie RAPHAËL | webpage | Google Scholar |
Ludwik LEIBLER | webpage | Google Scholar |
Teresa LOPEZ-LEON | webpage | Google Scholar |
Mathilde REYSSAT | webpage | Google Scholar |
Olivier DAUCHOT | webpage | Google Scholar |
Vincent DÉMERY | webpage | Google Scholar |
Matthieu LABOUSSE | webpage | Google Scholar |

Top